本文目录一览:
- 1、什么是约数?
- 2、约数的定义? ? ?
- 3、什么叫约数?
- 4、约数是什么?
- 5、约数是什么意思 约数的含义是什么
什么是约数?
约数即是因数。整数a除以非零整数b,除得的商正好是整数而没有余数,我们就说a能被b整除,或b能整除a。a称为b的倍数,b称为a的约数。
约数有正负之分。通常我们所说的约数是正约数。
a与b的公因数表示为既是数a的因数,又是数b的因数的数c。两个数的最大公因数是两个数的公因数中最大的一个。
扩展资料:
比较普遍的求约数方法是短除法。短除符号就像一个倒过来的除号,短除法就是先写出要求最大公因数的两个数A、B,再画一个短除号,接着在原本写除数的位置写两个数公有的质因数Z(通常从最小的质数开始),然后在短除号的下方写出这两个数被Z整除的商a,b。
对a,b重复以上步骤,以此类推,直到最后的商互质为止,再把所有的除数相乘,其积即为A,B的最大公因数。
参考资料:百度百科-约数
约数的定义? ? ?
定义
整数a除以整数b(b≠0) 除得的商正好是整数而没有余数,我们就说a能被b整除,或b能整除a。a叫b的倍数,b叫a的约数(或因数)。在大学之前,所指的一般都是正约数。约数和倍数相互依存,不能单独说某个数是约数或倍数。一个数的约数是有限的。
范例
在自然数的范围内,
4的约数有:1、2、4。
6的约数有:1、2、3、6。
10的约数有:1、2、5、10。
12的约数有:1、2、3、4、6、12。
15的约数有:1、3、5、15。
18的约数有:1、2、3、6、9、18。
20的约数有:1、2、4、5、10、20。
注意:一个数的约数包括1及其本身。
例如:能被24整除的有:1、2、3、4、6、8、12、24。
所以
24的约数有:1、2、3、4、6、8、12、24。
…………………………………………………
公因数
如果一个数c既是数a的因数,又是数b的因数,那么c叫做a与b的公因数。可以表示为(a,b)=c。
最大公因数
两个数的公因数中最大的一个,叫做这两个数的最大公因数。
最大公因数的求法
1、 枚举法 将两个数的因数分别一一列出,从中找出其公因数,再从公因数中找出最大的一个,即为这两个数的最大公因数。
例:求30与24的最大公因数。
30的因数有:1,2,3,5,6,10,15,30
24的因数有:1,2,3,4,6,8,12,24
易得其公因数中最大的一个是6,所以30和24的最大公因数是6。
2、 短除法 短除符号就像一个倒过来的除号,短除法就是先写出要求最大公因数的两个数A、B,再画一个短除号,接着在原本写除数的位置写两个数公有的质因数Z(通常从最小的质数开始),然后在短除号的下方写出这两个数被Z整除的商a,b,对a,b重复以上步骤,以此类推,直到最后的商互质为止,再把所 求12和18的最大公约数有的除数相乘,其积即为A,B的最大公因数。 短除法(短除法同样适用于求最小公倍数,只需将其所有除数与最后所得的商相乘即可)
例:求12和18的最大公约数。
解:用短除法,由左图,易得12和18的最大公约数为2×3=6.。
3、分解质因数将需要求最大公因数的两个数A,B分别分解质因数,再从中找出A、B公有的质因数,把这些公有的质因数相乘,即得A、B的最大公约数。
例:求48和36的最大公因数。
把48和36分别分解质因数:
48=2×2×2×2×3
36=2×2×3×3
其中48和36公有的质因数有2、2、3,所以48和36的最大公因数是 2×2×3=12。
4、辗转相除法(欧几里得算法)对要求最大公因数的两个数a、b,设ba,先用b除a,得a=bq……r1(0≤r1b)。若r1=0,则(a,b)=b;若r1≠0,则再用r1除b,得b=r1q……r2 (0≤r2r1).,若r2=0,则(a,b)=r1,若r2≠0,则继续用r2除r1……如此循环,直到能整除为止。其最后一个非零余数即为(a,b)。
这一算法的证明如下:
设两数为a、b(ba),用gcd(a,b)表示a,b的最大公约数,r=a mod b 为a除以b以后的余数,辗转相除法即是要证明gcd(a,b)=gcd(b,r)。
令c=gcd(a,b),则设a=mc,b=nc,根据前提有r =a-kb=mc-knc=(m-kn)c
由上,可知c也是r的因数,故可以断定m-kn与n互素【否则,可设m-kn=xd,n=yd,(d1),则m=kn+xd=kyd+xd=(ky+x)d,则a=mc=(ky+x)dc,b=nc=ycd,故a与b最大公因数成为cd,而非c】
所以 gcd(b,r)=c,继而gcd(a,b)=gcd(b,r)。
例:求8251和6105的最大公因数。
考虑用较大数减较小数,求得商和余数:
8251=6105×1+2146
6105=2146×2+1813
2146=1813×1+333
1813=333×5+148
333=148×2+37
148=37×4
最后除数37是148和37的最大公因数,也就是8251与6105的最大公因数。
更相减损术 更相减损术出自《九章算术》的一种求最大公约数的算法,它原本是为约分而设计的,但它适用于任何需要求最大公约数的场合。其原文为:“可半者半之,不可半者,副置分母、子之数,以少减多,更相减损,求其等也。以等数约之。”
翻译成现代语言就是
第一步:任意给定两个正整数a、b;判断它们是否都是偶数。若是,则用2约简;若不是则执行第二步。
第二步:以较大的数减较小的数,接着把所得的差与较小的数比较,并以大数减小数。继续这个操作,直到所得的减数和差相等为止。 这个数就是a、b的最大公约数。
例:求98与63的最大公因数。
分析:由于63不是偶数,把98和63以大数减小数,并辗转相减:
98-63=35
63-35=28
35-28=7
28-7=21
21-7=14
14-7=7
所以,98和63的最大公约数为7。
注:以上1、2、3同样适用于求多个自然数的最大公约数。一般地,对自然数n进行分解质因数,设n可以分解为
n=p(1)^α(1)·p(2)^α*(2)·…·p(k)^α(k)
其中p(1)、p(2)、…p(k)是不同的质数,α(1)、α(2)、…α(k)是正整数,则形如
n=p(1)^β(1)·p(2)^β*(2)·…·p(k)^β(k)
的数都是n的约数,其中β(1)可取a(1)+1个值:0,1,2,…,α(1);β(2)可取α(2)+1个值:0,1,2,…,α(2)…;β(k)可取a(k)+1个值:0,1,2,…,α(k).且n的约数也都是上述形式,根据乘法原理,n的约数共有
(α(1)+1)(α(2)+1)…(α(k)+1) (7)
个。
式(7)即为求一个数约数个数的公式。
什么叫约数?
约数,又称因数。整数a除以整数b(b≠0) 除得的商正好是整数而没有余数,我们就说a能被b整除,或b能整除a。a称为b的倍数,b称为a的约数。在大学之前,”约数”一词所指的一般只限于正约数。约数和倍数都是二元关系的概念,不能孤立地说某个整数是约数或倍数。一个整数的约数是有限的。同时,它可以在特定情况下成为公约数。
最大公约数的求法
已知大数为a,小数为b。求。 1. a ÷ b,令r为所得余数(0≤r<b) 若 r = 0,算法结束;b 即为答案。 2. 若r不为0,则互换:置 a←b,b←r,并返回第一步。
最大公约数的定义
如果一个自然数同时是若干个自然数的约数,那么称这个自然数是这若干个自然数的公约数。在所有公约数中最大的一个公约数,称之为这若干个自然数的最大公约数。例如:(8,12)=4,(6,9,15)=3。
约数是什么?
约数,又称因数。整数a除以整数b(b≠0) 除得的商正好是整数而没有余数,我们就说a能被b整除,或b能整除a。a称为b的倍数,b称为a的约数。
约数和倍数都是二元关系的概念,不能孤立地说某个整数是约数或倍数。一个整数的约数是有限的。同时,它可以在特定情况下成为公约数。
举例:
例:求12和18的最大公约数。
解:用短除法,易得12和18的最大公约数为2×3=6。
例:求144的所有约数。
解:所有约数(72,2)(36,4)(18,8)(9,16)(3,48)
约数是什么意思 约数的含义是什么
1、意思 1.大约的数目。 2.一个数能够整除另一数,这个数就是另一数的约数。如2,3,4,6都能整除12,因此2,3,4,6都是12的约数。也叫因数。
2、反义词 确数