本文目录一览:
- 1、角平分线是如何定义的?
- 2、角平分线的定义
- 3、角平分线的定义是什么?
- 4、角平分线的定义,以及性质
角平分线是如何定义的?
定义:对于一种事物的本质特征或一个概念的内涵和外延的确切而简要的说明;或是透过列出一个事件或者一个物件的基本属性来描述或规范一个词或一个概念的意义。
角平分线的定义是阐述什么是角平分线:从一个角的顶点引出一条射线,把这个角分成两个完全相同的角,这条射线叫做这个角的角平分线。
性质:某事物的性质就是由该事物所决定的事实。也就是根据定义得到的一定正确的事实。
角平分线的性质:
1,角平分线分得的两个角相等,都等于该角的一半。(定义)
2,角平分线上的点到角的两边的距离相等。
角平分线的定义
角平分线的定义:从一个角的顶点引出一条射线,把这个角分成两个相等的角,这条射线叫做这个角的角平分线。
■
三角形的角平分线定义:三角形顶点到其内角的角平分线交对边的点连的一条线段,叫三角形的角平分线。
【注】三角形的角平分线不是角的平分线,是线段。角的平分线是射线。
■拓展:三角形的三条角平分线相交于一点,并且这一点到三条边的距离相等!(即内心)。
■定理1:在角平分线上的任意一点到这个角的两边距离相等。
■逆定理:在一个角的内部(包括顶点),且到这个角的两边距离相等的点在这个角的角平分线上。
■定理2:三角形一个角的平分线分对边所成的两条线段与这个角的两邻边对应成比例,
如:在△ABC中,BD平分∠ABC,则AD:DC=AB:BC。
角平分线的定义是什么?
从一个角的顶点引出一条射线,把这个角分成两个完全相同的角,这条射线叫做这个角的角平分线。
三角形三条角平分线的交点叫做三角形的内心。三角形的内心到三边的距离相等,是该三角形内切圆的圆心。
扩展资料:
三角形的一个角的平分线与这个角的对边相交,连结这个角的顶点和与对边交点的线段叫做三角形的角平分线(也叫三角形的内角平分线)。 由定义可知,三角形的角平分线是一条线段。 由于三角形有三个内角,所以三角形有三条角平分线。三角形的角平分线交点一定在三角形内部。
角平分线的定义,以及性质
角平分线的定义:如果一条射线把一个角分成两个相等的角,那么这条射线叫角的平分线。
角平分线的性质:
1、角平分线可以得到两个相等的角。
2、角平分线上的点到角两边的距离相等。
3、三角形的三条角平分线交于一点,称作三角形内心。三角形的内心到三角形三边的距离相等。
4、三角形一个角的平分线,这个角平分线其对边所成的两条线段与这个角的两邻边对应成比例。
扩展资料
角平分线是天然的、涉及对称的特征,一般情况下,有下列三种基本结构:
1、见角平分线上的一点向角的一边作的垂线,可过该点向另一边作垂线;
2、见角平分线上的一点向角平分线作的垂线,可延长该垂线段交于角的另一 边;
3、在角平分线的两边截取等线段,构造全等.
三角形的三条角平分线交于一点,称作三角形的内心。三角形的内心到三角形三边的距离相等。
三角形一个角的平分线,这个角平分线其对边所成的两条线段与这个角的两邻边对应成比例。