本文目录一览:
- 1、奇变偶不变,符号看象限,是什么原理,及公式
- 2、什么叫奇变偶不变,符号看象限??
- 3、奇变偶不变符号看象限是什么意思
- 4、奇变偶不变符号看象限是什么?
- 5、奇变偶不变,符号看象限是什么意思?
奇变偶不变,符号看象限,是什么原理,及公式
1.“奇变偶不变,符号看象限”是三角函数里关于诱导公式的一句口诀。
2.具体解释如下:
下面是16个常用的诱导公式
sin(90°-α)= cosα sin(90°+α)= cosα
cos(90°-α)= sinα cos(90°+α)= – sinα
sin(270°-α)= – cosα sin(270°+α)= – cosα
cos(270°-α)= – sinα cos(270°+α)= sinα
sin(180°-α)= sinα sin(180°+α)= – sinα
cos(180°-α)= – cosα cos(180°+α)= – cosα
sin(360°-α)= – sinα sin(360°+α)= sinα
cos(360°-α)= cosα cos(360°+α)= cosα
“奇变偶不变”的意思是:例如cos(270°-α)= – sinα中, 270°是90°的3(奇数)倍所以cos变为sin,即奇变;又sin(180°+α)= – sinα中, 180°是90°的2(偶数)倍所以sin还是sin,即偶不变。
“符号看象限”的意思是:通过公式左边的角度所落的象限决定公式右边是正还是是负。例如cos(270°-α)= – sinα中, 视α为锐角,270°-α是第三象限角,第三象限角的余弦为负,所以等式右边为负号。又如sin(180°+α)= – sinα 中, 视α为锐角,180°+α是第三象限角,第三象限角的正弦为负,所以等式右边有负号。注意:公式中α可以不是锐角,只是为了记住公式,视α为锐角。
另外这个口诀还能记住正切、余切、正割、余割的诱导公式,推导过程与上面的正弦、余弦相同。
什么叫奇变偶不变,符号看象限??
奇变偶不变,符号看象限是诱导公式的口诀。
奇变偶不变(对k而言,指k取奇数或偶数),符号看象限(看原函数,同时可把α看成是锐角)。公式右边的符号为把α视为锐角时,角k·360°+α(k∈Z),-α、180°±α,360°-α所在象限的原三角函数值的符号可记忆:水平诱导名不变;符号看象限。
各种三角函数在四个象限的符号如何判断,也可以记住口诀“一全正;二正弦(余割);三两切;四余弦(正割)”。
扩展资料:
当奇变偶不变,先暂不考虑正负号的情况:
1、当k为奇数时,终边上的点P’(±y,±x)与原终边上的点P(x,y)横纵坐标正好相反,所以对应的三角比要变;
2、当k为偶数时,终边上的点P’(±x,±y)与原终边上的点P(x,y)横纵坐标没有变化,所以对应的三角比不变;
符号看象限:使用这句口诀时,都是假设原角是锐角,因为锐角的任意三角比都是正的,这样判断正负号的时候,就不用考虑三角比本身的正负情况。
参考资料来源:百度百科-诱导公式
奇变偶不变符号看象限是什么意思
“奇变偶不变,符号看象限”是三角函数诱导公式的记忆口诀,其中“奇变偶不变”是对k而言,指的是k取奇数或偶数;“符号看象限”指的是根据原函数判断正负,同时应把α看成是锐角。以cos(270°-α)=-sinα为例,270°为奇数,所以cos变为sin;而270°-α是第三象限角,第三象限角的余弦为负,所以等式右边为负号。
三角函数诱导公式口诀
“奇变偶不变,符号看象限”可以理解为:
第一象限内任何一个角的三角函数值都是“+”;
第二象限内只有正弦和余割是“+”,其余全部是“-”;
第三象限内只有正切和余切是“+”,其余函数是“-”;
第四象限内只有正割和余弦是“+”,其余全部是“-”。
常用的诱导公式
sin(90°-α)=cosαsin(90°+α)=cosα
cos(90°-α)=sinαcos(90°+α)=-sinα
sin(270°-α)=-cosαsin(270°+α)=-cosα
cos(270°-α)=-sinαcos(270°+α)=sinα
sin(180°-α)=sinαsin(180°+α)=-sinα
cos(180°-α)=-cosαcos(180°+α)=-cosα
sin(360°-α)=-sinαsin(360°+α)=sinα
cos(360°-α)=cosαcos(360°+α)=cosα
奇变偶不变符号看象限是什么?
奇变偶不变:如果k是奇数,那么sin变成cos,以此类推;如果k是偶数,那么sin仍为sin,以此类推。
符号看象限:假定α是第一象限角,根据kπ/2+α所在象限的三角函数的符号确定诱导公式的符号。
例如sin(3π/2+α),k=3是奇数所以变为cos,假定α是第一象限角则3π/2+α是第四象限角,第四象限角正弦值为负,所以符号是”-“,所以sin(3π/2+α)=-cosα。
又如tan(-π+α),k=-2是偶数所以仍是tan,假定α是第一象限角则-π+α是第三象限角,第三象限角正切值为正,所以符号是”+”,所以tan(-π+α)=tanα。
三角函数诱导公式口诀:
奇变偶不变,符号看象限。
注:奇变偶不变(对k而言,指k取奇数或偶数),符号看象限(看原函数,同时可把a看成是锐角)。
公式右边的符号为把a视为锐角时,角k .360° +a (kEZ) ,-a、180° +a,360°-a所在象限的原三角函数值的符号可记忆:水平诱导名不变;符号看象限。各种三角函数在四个象限的符号如何判断,也可以记住口诀“一全正;二正弦(余割)。
三两切;四余弦(正割)”。
这十二字口诀的意思就是说。
第一象限内任何一个角的三角函数值都是“+”。
第二象限内只有正弦和余割是“+”,其余全部是“_”。
第三象限内只有正切和余切是“+”,其余函数是“_”。
第四象限内只有正割和余弦是“+”,其余全部是“_”。
一全正,二正弦,三双切,四余弦。
奇变偶不变,符号看象限是什么意思?
奇变偶不变,符号看象限是诱导公式的口诀。
奇变偶不变(对k而言,指k取奇数或偶数),符号看象限(看原函数,同时可把α看成是锐角)。公式右边的符号为把α视为锐角时,角k·360°+α(k∈Z),-α、180°±α,360°-α所在象限的原三角函数值的符号可记忆:水平诱导名不变;符号看象限。
各种三角函数在四个象限的符号如何判断,也可以记住口诀“一全正;二正弦(余割);三两切;四余弦(正割)”。
当奇变偶不变,先暂不考虑正负号的情况:
1、当k为奇数时,终边上的点P’(±y,±x)与原终边上的点P(x,y)横纵坐标正好相反,所以对应的三角比要变;
2、当k为偶数时,终边上的点P’(±x,±y)与原终边上的点P(x,y)横纵坐标没有变化,所以对应的三角比不变;
符号看象限:使用这句口诀时,都是假设原角是锐角,因为锐角的任意三角比都是正的,这样判断正负号的时候,就不用考虑三角比本身的正负情况。