本文目录一览:
- 1、中位数和众数是什么意思?
- 2、中位数和众数
- 3、什么叫众数和中位数
- 4、平均数,中位数和众数是什么意思,有什么区别
- 5、中位数和众数是什么
- 6、什么是中位数和众数
中位数和众数是什么意思?
中位数(又称中值):是统计学中的专有名词,代表一个样本、种群或概率分布中的一个数值,其可将数值集合划分为相等的上下两部分。
众数:是统计学名词,在统计分布上具有明显集中趋势点的数值,代表数据的一般水平(众数可以不存在或多于一个)。 用 M 表示。 理性理解:简单的说,就是一组数据中占比例最多的那个数。
其中中位数是以它在所有标志值中所处的位置确定的全体单位标志值的代表值,不受分布数列的极大或极小值影响,从而在一定程度上提高了中位数对分布数列的代表性。
扩展资料:
中位数和众数的计算方式:
1、众数:数一下数列中出现次数最多的数,就是众数。需要注意的是,一组数列可能没有众数、或者有多个众数。比如数列1:1、2、3、4、5,就没有众数;而数列2:1、2、2、3、3,就含有两个众数,分比为2和3。
2、中位数:需要先对数列按从小到大的顺序排列,然后选取数列中间位置的数即为平均数。比如数列1:1、2、3、4、5,中位数为3。奇数数列比较好计算,直接是数列最中间的数,偶数列麻烦一些,取中间两个数的平均数。比如数列2:1、2、3、4,中位数为2和3的平均值,2.5。
参考资料来源:百度百科-中位数
参考资料来源:百度百科-众数 (统计学/数学名词)
中位数和众数
众数是在一组数据中,出现次数最多的数据,是一组数据中的原数据。中位数是按顺序排列的一组数据中居于中间位置的数,代表一个样本、种群或概率分布中的一个数值,其可将数值集合划分为相等的上下两部分。
中位数和众数的意义:将一组数据从小到大(或从大到小)排列,中间的数称为这组数据的中位数。
中位数和众数的求法。
将一组数据按大小的顺序排列,如果是奇数个数据,中间的数就为这组数据的中位数,如果是偶数个数据,中间两个数的平均数为这组数据的中位数。
众数,就是一组数据中出现次数最多的,有可能是多个众数。
什么叫众数和中位数
众数:
一般来说,一组数据中,出现次数最多的数就叫这组数据的众数。
例如:2,3,3,3,4,5的众数是3。
中位数:
把一组数据按从小到大的数序排列,在中间的一个数字(或两个数字的平均值)叫做这组数据的中位数。
如果总数个数是奇数的话,按从小到大的顺序,取中间的那个数。
如果总数个数是偶数个的话,按从小到大的顺序,取中间那两个数的平均数。
扩展资料:
用众数代表一组数据,可靠性较差,不过,众数不受极端数据的影响,并且求法简便。在一组数据中,如果个别数据有很大的变动,选择中位数表示这组数据的“集中趋势”就比较适合。
当数值或被观察者没有明显次序(常发生于非数值性资料)时特别有用,由于可能无法良好定义算术平均数和中位数。
例子:{鸡、鸭、鱼、鱼、鸡、鱼}的众数是鱼。
众数算出来是销售最常用的,代表最多的。
平均数是通过计算得到的,因此它会因每一个数据的变化而变化。
中位数是通过排序得到的,它不受最大、最小两个极端数值的影响。部分数据的变动对中位数没有影响,当一组数据中的个别数据变动较大时,常用它来描述这组数据的集中趋势。
众数也是数据的一种代表数,反映了一组数据的集中程度.日常生活中诸如“最佳”、“最受欢迎”、“最满意”等,都与众数有关系,它反映了一种最普遍的倾向。
参考资料来源:百度百科——众数
参考资料来源:百度百科——中位数
平均数,中位数和众数是什么意思,有什么区别
平均数是指一组数据之和,除以这组数的个数,所得的结果就是平均数。
中位数是指把一组数据从小到大排列,最中间的那个数,如果这组数据的个数是奇数,那最中间那个就是中位数,如果这组数据的个数为偶数,那就把中间的两个数之和除以2,所得的结果就是中位数。
众数是指一组数据中出现次数量多的那个数,众数可以是多个。
拓展资料:
平均数是表示一组数据集中趋势的量数,是指在一组数据中所有数据之和再除以这组数据的个数。它是反映数据集中趋势的一项指标。解答平均数应用题的关键在于确定“总数量”以及和总数量对应的总份数。在统计工作中,平均数(均值)和标准差是描述数据资料集中趋势和离散程度的两个最重要的测度值。
平均数是统计学中最常用的统计量,用来表明资料中各观测值相对集中较多的中心位置。在畜牧业、水产业生产实践和科学研究中,平均数被广泛用来描述或比较各种技术措施的效果、畜禽某些数量性状的指标等等。
统计平均数是用于反映现象总体的一般水平,或分布的集中趋势。数值平均数是总体标志总量对比总体单位数而计算的。
平均数是统计中的一个重要概念。小学数学里所讲的平均数一般是指算术平均数,也就是一组数据的和除以这组数据的个数所得的商。在统计中算术平均数常用于表示统计对象的一般水平,它是描述数据集中位置的一个统计量。既可以用它来反映一组数据的一般情况、和平均水平,也可以用它进行不同组数据的比较,以看出组与组之间的差别。用平均数表示一组数据的情况,有直观、简明的特点,所以在日常生活中经常用到,如平均速度、平均身高、平均产量、平均成绩等等。
中位数(又称中值,英语:Median),统计学中的专有名词,代表一个样本、种群或概率分布中的一个数值,其可将数值集合划分为相等的上下两部分。
对于有限的数集,可以通过把所有观察值高低排序后找出正中间的一个作为中位数。如果观察值有偶数个,通常取最中间的两个数值的平均数作为中位数。
对于一组有限个数的数据来说,它们的中位数是这样的一种数:这群数据里的一半的数据比它大,而另外一半数据比它小。 计算有限个数的数据的中位数的方法是:把所有的同类数据按照大小的顺序排列。如果数据的个数是奇数,则中间那个数据就是这群数据的中位数;如果数据的个数是偶数,则中间那2个数据的算术平均值就是这群数据的中位数。
中位数:也就是选取中间的数,是一种衡量集中趋势的方法。
众数(Mode)是统计学名词,在统计分布上具有明显集中趋势点的数值,代表数据的一般水平(众数可以不存在或多于一个)。 修正定义:是一组数据中出现次数最多的数值,叫众数,有时众数在一组数中有好几个。用 M 表示。 理性理解:简单的说,就是一组数据中占比例最多的那个数。
中位数和众数是什么
中位数:将一组数据按大小依次排列,把处在最中间位置的一个数(或最中间位置的两个数的平均数)叫做这组数据的中位数。中位数的大小仅与数据的排列位置有关。因此中位数不受偏大和偏小数的影响,当一组数据中的个别数据变动较大时,常用它来描述这组数据的集中趋势。
众数:在一组数据中出现次数最多的数据叫做这组数据的众数。因此求一组数据的众数既不需要计算,也不需要排序,而只要数出出现次数较多的数据的频率就行了。众数与概率有密切的关系。众数的大小仅与一组数据中的部分数据有关。当一组数据中有不少数据多次重复出现时,它的众数也往往是我们关心的一种集中趋势。
什么是中位数和众数
众数是在一组数据中,出现次数最多的数据,是一组数据中的原数据。中位数是按顺序排列的一组数据中居于中间位置的数,代表一个样本、种群或概率分布中的一个数值。
什么是中位数
中位数又称中值,统计学中的专有名词,是按顺序排列的一组数据中居于中间位置的数,代表一个样本、种群或概率分布中的一个数值,其可将数值集合划分为相等的上下两部分。中位数是按顺序排列的一组数据中居于中间位置的数,即在这组数据中,有一半的数据比他大,有一半的数据比他小,这里用m0.5来表示中位数。
对于有限的数集,可以通过把所有观察值高低排序后找出正中间的一个作为中位数。如果观察值有偶数个,通常取最中间的两个数值的平均数作为中位数。中位数只有一个。
什么是众数
众数是指在统计分布上具有明显集中趋势点的数值,代表数据的一般水平。也是一组数据中出现次数最多的数值,有时众数在一组数中有好几个。用M表示。众数是样本观测值在频数分布表中频数最多的那一组的组中值,主要应用于大面积普查研究之中。
一般来说,一组数据中,出现次数最多的数就叫这组数据的众数。但是,如果有两个或两个以上个数出现次数都是最多的,那么这几个数都是这组数据的众数。还有,如果所有数据出现的次数都一样,那么这组数据没有众数。
众数和中位数以及平均数的区别
(1)平均数是通过计算得到的,因此它会因每一个数据的变化而变化。
(2)中位数是通过排序得到的,它不受最大、最小两个极端数值的影响。部分数据的变动对中位数没有影响,当一组数据中的个别数据变动较大时,常用它来描述这组数据的集中趋势。
(3)众数也是数据的一种代表数,反映了一组数据的集中程度.日常生活中诸如“最佳”、“最受欢迎”、“最满意”等,都与众数有关系,它反映了一种最普遍的倾向。