本文目录一览:
- 1、鸡兔同笼到底是什么意思
- 2、鸡兔同笼各种解法
- 3、鸡兔同笼怎么算
- 4、鸡兔同笼的十种解法
鸡兔同笼到底是什么意思
鸡兔同笼,是我国古代著名趣题之一,记载于《孙子算经》之中。鸡兔同笼问题,是小学奥数的常见题型。
书中是这样叙述的:“今有雉兔同笼,上有三十五头,下有九十四足,问雉兔各几何?”这四句话的意思是:有若干只鸡和兔同在一个笼子里,从上面数,有35个头;从下面数,有94只脚。问笼中各有几只鸡和兔。
兔:94÷2-35 =12
鸡:35-12=23
鸡兔同笼各种解法
鸡兔同笼的解法有假设法、公式法、方程法等几种方法。
题目示例:有若干只鸡兔同在一个笼子里,从上面数,有35个头,从下面数,有94只脚。问笼中各有多少只鸡和兔?
1、假设法
(1)假设全是鸡:2×35=70(只)
鸡脚比总脚数少:94-70=24 (只)
兔子比鸡多的脚数:4-2=2(只)
兔子的只数:24÷2=12 (只)
鸡的只数:35-12=23(只)
(2)假设全是兔子:4×35=140(只)
兔子脚比总数多:140-94=46(只)
兔子比鸡多的脚数:4-2=2(只)
鸡的只数:46÷2=23(只)
兔子的只数:35-23=12(只)
2、一元一次方程法:
(1)解:设兔有x只,则鸡有(35-x)只。
4x+2(35-x)=94 解得x=12
鸡:35-12=23(只)
(2)解:设鸡有x只,则兔有(35-x)只。
2x+4(35-x)=94 解得x=23
兔:35-23=12(只)
所以兔子有12只,鸡有23只。
3、二元一次方程组
解:设鸡有x只,兔有y只。
x+y=35 2x+4y=94
解得x=23 y=12
所以兔子有12只,鸡有23只。
4、抬腿法
(1)假如让鸡抬起一只脚,兔子抬起2只脚,还有94÷2=47(只)脚。笼子里的兔就比鸡的脚数多1,这时,脚与头的总数之差47-35=12,就是兔子的只数。
(2)假如鸡与兔子都抬起两只脚,还剩下94-35×2=24只脚 , 这时鸡是屁股坐在地上,地上只有兔子的脚,而且每只兔子有两只脚在地上,所以有24÷2=12只兔子,就有35-12=23只鸡。
(3)我们可以先让兔子都抬起2只脚,那么就有35×2=70只脚,脚数和原来差94-70=24只脚,这些都是每只兔子抬起2只脚,一共抬起24只脚,用24÷2得到兔子有12只,用35-12得到鸡有23只。
5、公式法
公式1:(兔的脚数×总只数-总脚数)÷(兔的脚数-鸡的脚数)=鸡的只数
总只数-鸡的只数=兔的只数
公式2:( 总脚数-鸡的脚数×总只数)÷(兔的脚数-鸡的脚数)=兔的只数
总只数-兔的只数=鸡的只数
公式3:总脚数÷2-总头数=兔的只数
总只数—兔的只数=鸡的只数
公式4:兔总只数=(鸡兔总脚数-2×鸡兔总只数)÷2 鸡的只数=鸡兔总只数-兔总只数
公式5:鸡的只数=(4×鸡兔总只数-鸡兔总脚数)÷2 兔的只数=鸡兔总只数-鸡的只数
公式6 :4×+2(总数-x)=总脚数 (x=兔,总数-x=鸡数,用于方程)
参考资料来源:百度百科-鸡兔同笼
鸡兔同笼怎么算
鸡兔同笼计算公式:
1、公式:(兔的脚数×总只数-总脚数)÷(兔的脚数-鸡的脚数)=鸡的只数
总只数-鸡的只数=兔的只数
2、公式:( 总脚数-鸡的脚数×总只数)÷(兔的脚数-鸡的脚数)=兔的只数
总只数-兔的只数=鸡的只数
3、公式:总脚数÷2—总头数=兔的只数
总只数—兔的只数=鸡的只数
4、公式:鸡的只数=(4×鸡兔总只数-鸡兔总脚数)÷2 兔的只数=鸡兔总只数-鸡的只数
5、公式:兔总只数=(鸡兔总脚数-2×鸡兔总只数)÷2 鸡的只数=鸡兔总只数-兔总只数
6、公式 :4×+2(总数-x)=总脚数 (x=兔,总数-x=鸡数,用于方程)
扩展资料
“鸡兔同笼”是一类有名的中国古算题。最早出现在《孙子算经》中。许多小学算术应用题都可以转化成这类问题,或者用解它的典型解法–“假设法”来求解。因此很有必要学会它的解法和思路。
例: 有若干只鸡和兔子,它们共有88个头,244只脚,鸡和兔各有多少只
解:我们设想,每只鸡都是”金鸡独立”,一只脚站着;而每只兔子都用两条后腿,像人一样用两只脚站着,地面上出现脚的总数的一半,·也就是
244÷2=122(只)
在122这个数里,鸡的头数算了一次,兔子的头数相当于算了两次。因此从122减去总头数88,剩下的就是兔子头数
122-88=34(只),
有34只兔子,当然鸡就有54只。
答:有兔子34只,鸡54只。
上面的计算,可以归结为下面算式:
总脚数÷2-总头数=兔子数. 总头数-兔子数=鸡数
参考资料:百度百科-鸡兔同笼
鸡兔同笼的十种解法
鸡兔同笼的十种解法如下 :
解法一:列表法
(1)逐一列表法:就是把鸡和兔从1到35分别枚举,然后计算脚的数量,等于94只时就能找到答案,但数据量大时会比较繁琐。
(2)跳跃列表法:枚举的时候,根据脚数的值,跳跃枚举,简化枚举的数量。
(3)取中列表法:先尝试鸡和兔的数量相等或者接近,再根据脚数进行调整。
以上这三种列表方法,虽然可以求出结果,但是都过于繁琐,解题时我们一般都不会使用。
解法二:假设法
(1)假设笼子里全是鸡
总脚数:35×2=70(只)
总 差:94-70=24(只)
单位差:4-2=2(只)
兔子:24÷2=12(只)
鸡:35-12=23(只)
答:鸡有23只,兔子有12只。
(2)假设全是兔
总脚数:35×4=140(只)
总 差:140-94=46(只)
单位差:4-2=2(只)
鸡:46÷2=23(只)
兔子:35-23=12(只)
答:鸡有23只,兔子有12只。
以上两种假设方法,是我们在低年级求解鸡兔同笼问题时经常采用的方法。
解法三:金鸡独立法
(1)假设让鸡抬起一条腿,兔子抬起两条腿
地上总脚数:94÷2=47(只)
每多一只兔子脚数就比头数多1
兔子:47-35=12(只)
鸡:35-12=23(只)
答:鸡有23只,兔子有12只。
(2)假设鸡和兔都抬起两条腿
地上总脚数:94-2×35=24(只)
地上的脚都是兔子的
兔子:24÷2=12(只)
鸡:35-12=23(只)
答:鸡有23只,兔子有12只。
(3)假设只让兔子抬起两只脚
此时地上每只鸡和兔子地上都有2只脚
地上总脚数:2×35=70(只)
兔子抬起脚总数:94-70=24(只)
兔子:24÷2=12(只)
鸡:35-12=23(只)
答:鸡有23只,兔子有12只。
解法四:方程法
(1)设鸡有x只,则兔有(35-x)只
依题意: 2x+4×(35-x)=94
x=23 35-x=35-23=12
答:鸡有23只,兔子有12只。
(2)设兔有x只,则鸡有(35-x)只
依题意: 4x+2×(35-x)=94
x=12 35-x=35-12=23
答:鸡有23只,兔子有12只。