高考数学试题(今年成人高考数学试题)

点击阅读全文

本文目录一览:

  • 1、2022年全国新高考1卷数学试题及答案详解
  • 2、2019年高考数学全国卷(含文理)总结
  • 3、高考数学大题题型总结
  • 4、2018年福建高考数学试卷试题及答案解析(答案WORD版)
  • 5、2022年全国新高考1卷数学试题及答案解析
  • 6、2018年浙江高考数学试卷试题及答案解析(答案WORD版)

2022年全国新高考1卷数学试题及答案详解

高考数学命题贯彻高考内容改革的要求,依据高中课程标准命题,进一步增强考试与教学的衔接。下面是我为大家收集的关于2022年全国新高考1卷数学试题及答案详解。希望可以帮助大家。

全国新高考1卷数学试题

全国新高考1卷数学答案详解

2022高考数学知识点 总结

1.定义:

用符号〉,=,〈号连接的式子叫不等式。

2.性质:

①不等式的两边都加上或减去同一个整式,不等号方向不变。

②不等式的两边都乘以或者除以一个正数,不等号方向不变。

③不等式的两边都乘以或除以同一个负数,不等号方向相反。

3.分类:

①一元一次不等式:左右两边都是整式,只含有一个未知数,且未知数的次数是1的不等式叫一元一次不等式。

②一元一次不等式组:

a.关于同一个未知数的几个一元一次不等式合在一起,就组成了一元一次不等式组。

b.一元一次不等式组中各个不等式的解集的公共部分,叫做这个一元一次不等式组的解集。

4.考点:

①解一元一次不等式(组)

②根据具体问题中的数量关系列不等式(组)并解决简单实际问题

③用数轴表示一元一次不等式(组)的解集

考点一:集合与简易逻辑

集合部分一般以选择题出现,属容易题。重点考查集合间关系的理解和认识。近年的试题加强了对集合计算化简能力的考查,并向无限集发展,考查 抽象思维 能力。在解决这些问题时,要注意利用几何的直观性,并注重集合表示 方法 的转换与化简。简易逻辑考查有两种形式:一是在选择题和填空题中直接考查命题及其关系、逻辑联结词、“充要关系”、命题真伪的判断、全称命题和特称命题的否定等,二是在解答题中深层次考查常用逻辑用语表达数学解题过程和逻辑推理。

考点二:函数与导数

函数是高考的重点内容,以选择题和填空题的为载体针对性考查函数的定义域与值域、函数的性质、函数与方程、基本初等函数(一次和二次函数、指数、对数、幂函数)的应用等,分值约为10分,解答题与导数交汇在一起考查函数的性质。导数部分一方面考查导数的运算与导数的几何意义,另一方面考查导数的简单应用,如求函数的单调区间、极值与最值等,通常以客观题的形式出现,属于容易题和中档题,三是导数的综合应用,主要是和函数、不等式、方程等联系在一起以解答题的形式出现,如一些不等式恒成立问题、参数的取值范围问题、方程根的个数问题、不等式的证明等问题。

考点三:三角函数与平面向量

一般是2道小题,1道综合解答题。小题一道考查平面向量有关概念及运算等,另一道对三角知识点的补充。大题中如果没有涉及正弦定理、余弦定理的应用,可能就是一道和解答题相互补充的三角函数的图像、性质或三角恒等变换的题目,也可能是考查平面向量为主的试题,要注意数形结合思想在解题中的应用。向量重点考查平面向量数量积的概念及应用,向量与直线、圆锥曲线、数列、不等式、三角函数等结合,解决角度、垂直、共线等问题是“新 热点 ”题型.

考点四:数列与不等式

不等式主要考查一元二次不等式的解法、一元二次不等式组和简单线性规划问题、基本不等式的应用等,通常会在小题中设置1到2道题。对不等式的工具性穿插在数列、解析几何、函数导数等解答题中进行考查.在选择、填空题中考查等差或等比数列的概念、性质、通项公式、求和公式等的灵活应用,一道解答题大多凸显以数列知识为工具,综合运用函数、方程、不等式等解决问题的能力,它们都属于中、高档题目.

一、排列

1定义

(1)从n个不同元素中取出m个元素,按照一定的顺序排成一列,叫做从n个不同元素中取出m个元素的一排列。

(2)从n个不同元素中取出m个元素的所有排列的个数,叫做从n个不同元素中取出m个元素的排列数,记为Amn.

2排列数的公式与性质

(1)排列数的公式:Amn=n(n-1)(n-2)…(n-m+1)

特例:当m=n时,Amn=n!=n(n-1)(n-2)…×3×2×1

规定:0!=1

二、组合

1定义

(1)从n个不同元素中取出m个元素并成一组,叫做从n个不同元素中取出m个元素的一个组合

(2)从n个不同元素中取出m个元素的所有组合的个数,叫做从n个不同元素中取出m个元素的组合数,用符号Cmn表示。

2比较与鉴别

由排列与组合的定义知,获得一个排列需要“取出元素”和“对取出元素按一定顺序排成一列”两个过程,而获得一个组合只需要“取出元素”,不管怎样的顺序并成一组这一个步骤。

排列与组合的区别在于组合仅与选取的元素有关,而排列不仅与选取的元素有关,而且还与取出元素的顺序有关。因此,所给问题是否与取出元素的顺序有关,是判断这一问题是排列问题还是组合问题的理论依据。

三、排列组合与二项式定理知识点

1.计数原理知识点

①乘法原理:N=n1·n2·n3·…nM(分步)②加法原理:N=n1+n2+n3+…+nM(分类)

2.排列(有序)与组合(无序)

Anm=n(n-1)(n-2)(n-3)-…(n-m+1)=n!/(n-m)!Ann=n!

Cnm=n!/(n-m)!m!

Cnm=Cnn-mCnm+Cnm+1=Cn+1m+1k?6?1k!=(k+1)!-k!

3.排列组合混合题的解题原则:先选后排,先分再排

排列组合题的主要解题方法:优先法:以元素为主,应先满足特殊元素的要求,再考虑其他元素.以位置为主考虑,即先满足特殊位置的要求,再考虑其他位置.

捆绑法(集团元素法,把某些必须在一起的元素视为一个整体考虑)

插空法(解决相间问题)间接法和去杂法等等

在求解排列与组合应用问题时,应注意:

(1)把具体问题转化或归结为排列或组合问题;

(2)通过分析确定运用分类计数原理还是分步计数原理;

(3)分析题目条件,避免“选取”时重复和遗漏;

(4)列出式子计算和作答.

经常运用的数学思想是:

①分类讨论思想;②转化思想;③对称思想.

4.二项式定理知识点:

①(a+b)n=Cn0ax+Cn1an-1b1+Cn2an-2b2+Cn3an-3b3+…+Cnran-rbr+-…+Cnn-1abn-1+Cnnbn

特别地:(1+x)n=1+Cn1x+Cn2x2+…+Cnrxr+…+Cnnxn

②主要性质和主要结论:对称性Cnm=Cnn-m

二项式系数在中间。(要注意n为奇数还是偶数,答案是中间一项还是中间两项)

所有二项式系数的和:Cn0+Cn1+Cn2+Cn3+Cn4+…+Cnr+…+Cnn=2n

奇数项二项式系数的和=偶数项而是系数的和

Cn0+Cn2+Cn4+Cn6+Cn8+…=Cn1+Cn3+Cn5+Cn7+Cn9+…=2n-1

③通项为第r+1项:Tr+1=Cnran-rbr作用:处理与指定项、特定项、常数项、有理项等有关问题。

5.二项式定理的应用:解决有关近似计算、整除问题,运用二项展开式定理并且结合放缩法证明与指数有关的不等式。

6.注意二项式系数与项的系数(字母项的系数,指定项的系数等,指运算结果的系数)的区别,在求某几项的系数的和时注意赋值法的应用。

不等式这部分知识,渗透在中学数学各个分支中,有着十分广泛的应用。因此不等式应用问题体现了一定的综合性、灵活多样性,对数学各部分知识融会贯通,起到了很好的促进作用。在解决问题时,要依据题设与结论的结构特点、内在联系、选择适当的解决方案,最终归结为不等式的求解或证明。不等式的应用范围十分广泛,它始终贯串在整个中学数学之中。

诸如集合问题,方程(组)的解的讨论,函数单调性的研究,函数定义域的确定,三角、数列、复数、立体几何、解析几何中的值、最小值问题,无一不与不等式有着密切的联系,许多问题,最终都可归结为不等式的求解或证明。

知识整合

1。解不等式的核心问题是不等式的同解变形,不等式的性质则是不等式变形的理论依据,方程的根、函数的性质和图象都与不等式的解法密切相关,要善于把它们有机地联系起来,互相转化。在解不等式中,换元法和图解法是常用的技巧之一。通过换元,可将较复杂的不等式化归为较简单的或基本不等式,通过构造函数、数形结合,则可将不等式的解化归为直观、形象的图形关系,对含有参数的不等式,运用图解法可以使得分类标准明晰。

2。整式不等式(主要是一次、二次不等式)的解法是解不等式的基础,利用不等式的性质及函数的单调性,将分式不等式、绝对值不等式等化归为整式不等式(组)是解不等式的基本思想,分类、换元、数形结合是解不等式的常用方法。方程的根、函数的性质和图象都与不等式的解密切相关,要善于把它们有机地联系起来,相互转化和相互变用。

3。在不等式的求解中,换元法和图解法是常用的技巧之一,通过换元,可将较复杂的不等式化归为较简单的或基本不等式,通过构造函数,将不等式的解化归为直观、形象的图象关系,对含有参数的不等式,运用图解法,可以使分类标准更加明晰。

4。证明不等式的方法灵活多样,但比较法、综合法、分析法仍是证明不等式的最基本方法。要依据题设、题断的结构特点、内在联系,选择适当的证明方法,要熟悉各种证法中的推理思维,并掌握相应的步骤,技巧和语言特点。比较法的一般步骤是:作差(商)→变形→判断符号(值)。

数列是高中数学的重要内容,又是学习高等数学的基础。高考对本章的考查比较全面,等差数列,等比数列的考查每年都不会遗漏。有关数列的试题经常是综合题,经常把数列知识和指数函数、对数函数和不等式的知识综合起来,试题也常把等差数列、等比数列,求极限和数学归纳法综合在一起。

探索性问题是高考的热点,常在数列解答题中出现。本章中还蕴含着丰富的数学思想,在主观题中着重考查函数与方程、转化与化归、分类讨论等重要思想,以及配方法、换元法、待定系数法等基本数学方法。

近几年来,高考关于数列方面的命题主要有以下三个方面;

(1)数列本身的有关知识,其中有等差数列与等比数列的概念、性质、通项公式及求和公式。

(2)数列与 其它 知识的结合,其中有数列与函数、方程、不等式、三角、几何的结合。

(3)数列的应用问题,其中主要是以增长率问题为主。试题的难度有三个层次,小题大都以基础题为主,解答题大都以基础题和中档题为主,只有个别地方用数列与几何的综合与函数、不等式的综合作为最后一题难度较大。

1.在掌握等差数列、等比数列的定义、性质、通项公式、前n项和公式的基础上,系统掌握解等差数列与等比数列综合题的规律,深化数学思想方法在解题实践中的指导作用,灵活地运用数列知识和方法解决数学和实际生活中的有关问题;

2.在解决综合题和探索性问题实践中加深对基础知识、基本技能和基本数学思想方法的认识,沟通各类知识的联系,形成更完整的知识网络,提高分析问题和解决问题的能力,

进一步培养学生阅读理解和创新能力,综合运用数学思想方法分析问题与解决问题的能力

2022年全国新高考1卷数学试题及答案详解相关 文章 :

★ 2022高考北京卷数学真题及答案解析

★ 2022高考甲卷数学真题试卷及答案

★ 2022北京卷高考文科数学试题及答案解析

★ 2022高考全国甲卷数学试题及答案

★ 2022年新高考Ⅱ卷数学真题试卷及答案

★ 2022全国乙卷理科数学真题及答案解析

★ 2022高考数学大题题型总结

★ 2022年高考全国一卷作文预测及范文

★ 2022年高考数学必考知识点总结最新

★ 2022年全国乙卷高考数学(理科)试卷

2019年高考数学全国卷(含文理)总结

一、总体评价

2019年高考数学命题严格依据考试大纲,重点考察数学的基础知识和应用,突出数学学科特色,着重考查考生的理性思维能力以及综合运用数学思维方法分析问题、解决问题的能力。试题突出学科素养导向,全面覆盖基础知识,凸显综合性、应用性,联系社会实际。试题稳中求新,稳中求变,较2018年真题有较大变化,但没有网上说的难度十年最难那么夸张,只是很多题目考察角度不一样,以往可能难在解题上,这次是难在思维和逻辑,重视主动思考和解题能力,将题目看懂理解了,难度其实和往年大体持平。不过去年是个例外,以后估计也不会出像去年那样简单的题目了。试题特点作为文理分科最后一年,今年文理试卷有六道选择,一道填空文理相通。其中文科试题难度与往年持平,理科更加注重思维运用和研究问题能力。整体难度有所提高。

1.素养导向,落实教育方针

合理创设情境,体现教育功能。理科Ⅱ卷第(13)题以我国高铁列车的发展成果为背景、文科Ⅱ卷第(5)题以“一带一路”知识测验为情境进行设计,引导学生关注现实社会和经济发展。理科Ⅱ卷第(4)题结合“嫦娥”四号实现人类历史首次月球背面软着陆的技术突破考查近似估算的能力,反映我国航天事业取得的成就。这些试题发挥了思想教育功能,体现了对德育的渗透和引导。理科Ⅰ卷第(15)题、理科Ⅱ卷第(18)题分别引入了非常普及的乒乓球和篮球运动,以其中普遍存在的比赛结果的预估和比赛场次的安排提出问题,要求考生应用数学方法分析和解决体育问题。文科Ⅰ卷第(6)题设置了学校对学生体质状况进行调查的情境,考查学生的抽样调查知识。这些试题在考查学生数学知识的同时,引导学生加强体育锻炼,体现了对学生的体育教育。结合学科知识,展示数学之美。文、理科Ⅱ卷第(16)题融入了中国悠久的金石文化,赋以几何体真实背景,文、理科Ⅰ卷第(4)题以著名的雕塑“断臂维纳斯”为例,探讨人体黄金分割之美,将美育教育融入数学教育。理论联系实际,引导劳动教育。文科Ⅰ卷第(17)题以商场服务质量管理为背景设计,体现对服务质量的要求,倡导高质量的劳动成果。文、理科Ⅲ卷第(16)题再现了学生到工厂劳动实践的场景,引导学生关注劳动、尊重劳动、参加劳动,体现了劳动教育的要求。

2.突出主干,强调本质

2019年高考全国卷Ⅰ理科数学试卷突显了主干知识的价值,强化了对三角函数和函数与导数(39分)、数列(10分)、立体几何(17分)、解析几何(22分)、统计与概率(17分)等核心主干知识的考查力度。同时对主观题的布局进行动态调整,考查考生灵活应变的能力和主动调整适应的能力,有助于学生全面学习掌握重点知识和重点内容,同时有助于破解僵化的应试教育。

3.强化思维,有效区分不同思维层次的考生今年试题非常侧重对逻辑推理能力、分析问题和解决问题的能力的考查。注重考查数学应用素养,体现综合性和应用性的考查要求。试题设置的情境真实、贴近生活,同时具有深厚的文化底蕴,体现数学原理和方法在解决问题中的价值和作用。理科Ⅰ卷第(6)题以我国古代典籍《周易》中描述事物变化的“卦”为背景设置了排列组合题,体现了中国古代的哲学思想。理科Ⅲ卷第(3)题,以学生阅读“四大名著”的调查数据为背景设计,情境贴近实际,为考生所熟悉。文、理科Ⅲ卷第(17)题以离子在生物体内残留情况为背景设计,反映了数学知识和方法在其他学科的应用。这些情境来源于我国社会主义建设的不同领域,结合社会现实,贴近生活,反映了数学应用的广阔领域,体现了数学的应用价值,有利于在中学数学教育中激发学生学习数学的热情,提高对数学价值的认识,提升数学素养,对中学的素质教育有很好的导向和促进作用。

4. 强调数学理论与实践相结合

通过设置真实的问题情境,引导学生从“解题”到“解决问题”能力的培养,使得学生能灵活应用所学知识进行分析问题与解决问题,提高学生学习数学兴趣(如21题)。其实我一直在传授的也是如此,数学光背记概念、背记题型是学不好的,概念一定要理解然后要会用。其实考察的本质是考学生自主解决问题的能力,不是死记硬背能力。以后考试形式也必将继续如此。

5. 注重基础,突出能力

2019年高考数学卷Ⅰ理科数学命题严格遵循了《考试大纲》和《数学课程标准》的要求。试题总体难度平缓,背景公平,容易题、中档题和难题的比例基本是3:5:2。试卷注重基础,解题思路常规,大多数试题都是以往高考和课本作业题适度拓展改编,即使是高区分度试题也是以中学数学主干知识和主要思想方法为载体的,较对比2018,选填变换增加:1道数学文化,1道概率;减少:排列组合和二项式定理模块,三视图;解答题压轴题由以往的导数调整为概率数列综合,而导数作为第二压轴题;选做题由解绝对值调整为不等式的证明。总之,今年考卷传达一个信息:回归课本,发展学生的基本数学思维,注重数学思维的培养。说白了,考生需要“吃透课本、抓实基础、注意通法通性,理解中心思想”,才能在高考中考出理想成绩。今后,中学数学教学要高度重视独立思考、逻辑推理、数学应用、数学阅读内在价值与迁移功能,培养学生思维的灵活性与创新性。除此之外,作为老师,也应该培养学生自主学习、解决问题的能力。同时,不要局限于平时练习的题型,是看到一种题型你看你做过好呢还是看到这个题你没做过,你通过自主思考解决了这道题好呢?高考几乎不会考已经考过很多遍的题型,我们平时给学生总结题型本质也是为了培养学生体系感和自主学习能力,因此,不同地方的试题、各种新颖的题,甚至有些偏题怪题也要有所涉及。

关于这几个题,我有话说

1、凭高考火了的——维纳斯。维纳斯的身高成了一个谜,也引发了广大网友的吐槽。

此题既可以按头到喉来算,也可以按肚脐到足底算,这正是出题的高明之处。而通常的考试,已知条件没有多余的,更不能相互矛盾。此题给了两个已知条件都可以算,就应该两者都算,相互印证。但实际上出题人故意两个已知条件都没告诉:只告诉头到脖子26,腿长105。头到脖子看成头到喉,得26(1.618/0.618)(1.618/0.618)=178。而腿长看成头到脖子看成头到喉,得26(1.618/0.618)(1.618/0.618)=178。而腿长看成肚脐到足底,算出 105×1.618=170。二者有差距,你取哪一个?不必请医学专家鉴定,自己摸一下身体。就应该承认:头到脖子更接近于头到喉,肚脐到足底应该比腿长多一些。选取175,既接近178,也与170不矛盾。按175算出肚脐到脚底175/1.618=108比腿长多3cm也是合理的。因此应该选B:175。这个数据的缺点,是正好与那个蒙答案的相同,容易误导考生相信懵答案。不过,如果明年高考设计一个数据让这些懵答案的全军覆没,他们以后就会印象深刻。如果说可怕,不是高考题目可怕,而是我们的学校培养出来你们这样不懂数学只会吐槽的废品,这样的教育效果有点可怕。什么是核心素养?能够从不同的汤中识别共同的药,这就是核心素养。有人能识别,有人不能识别,这就是区分度。不论高考题难易,招生人数不变,上大学的难度都一样。考题容易,大家的考分都高,高分都上不了大学,入学的难度并没有降低。考题难易不改变入学的难度,只改变入学考生的组成。考题容易,差生也有可能靠运气混进大学。考题死板,死记硬背有可能成功。考题灵活,将ABCD的汤换成维纳斯的头和脚这样的汤,把死记硬背的考生打蒙,把他们入学的门关窄一点甚至关死,让他们除了吐槽晕倒和哭泣之外无计可施,让那些潜心学习的考生不需要那么高的考分就能进大学.这才是普度众生的功德,也才是高考改革的正确方向,并且是核心素养的真正含义。

物理背景数学题还忘了赞全国卷2数学考试出有物理背景的题。

我早就主张这样来对付还忘了赞全国卷2数学考试出有物理背景的题。我早就主张这样来对付那些高考不选考物理的考生,你要躲物理,对不起,我就在数学考题中出物理,把你们通通刷掉,把入大学的机会让给那些勤恳老实的学生,他们才是国家的未来,你们如果不改过自新,就先当渣民吧。以前的高考题死搬硬套的题型偏多,不求甚解也能考130。今年稍微灵活了一点点,就被误定义为难!以后的高考题将更偏向竞赛题、建模题、实际生活应用题、动手实验操作题、统筹规划题、计算机网络通信题、历史文化底蕴题、有思想灵魂的题。死套公式的题将逐步进向灭绝。 这次试题整体来说,比以往高出一个层次,让那些背死书、走套路的学生为之一惊,是一次警告。对平时思路活跃、思维开阔的学生来说,是一个鼓励。是对前些年命题套路的一次冲击。只不过来的太突然,来在考生毫无准备的时候,来在决定他们前途和命运的考试中,未免有些残酷。高考数学考完,怨声载道,一致认为题目太难,以我看,这是应试教育的结果。长期进行应试训练,造成了学生不会思考,见了陌生问题就懵圈,见到没学过的知识点(哪怕是很简单的)就认为超纲。其实这样的试卷题目比较灵活,缺点也是题目灵活,另外问题总量大了些(这是多年应试教育形成的特点)。高考更加考察数学素养,分辨率高,未必是坏事儿。塌下心来学,把基础打扎实,就可以不变应万变。高考命题趋势预测注重双基,考查通性通法 绝大部分题目都可以利用基础知识、基本技能进行求解。考查形式更加灵活 在整体符合《考试大纲》、和《考试说明》要求的前提下,在各部分内容的布局和考察难度上都可以进行调整和改变。(改变以往固定题号考查固定题型的传统,所以在任何位置出现任何体型都不能意外)

考试大纲明确的能力要求:

空间想象能力

抽象概括能力

推理论证能力

运算求解能力

数据处理能力

应用意识和创新意识

突出学科素养导向,注重能力考查 关注文化、重视应用、强调知识迁移 鼓励探究、培养理性思维和逻辑

高考数学大题题型总结

导语:高考数学就是多题型的考试,需要考生多做多总结,数学网整理了高考数学题型:多做典型题多归纳总结,帮助大家提升。接下来我将跟大家一起来分享关于高考数学大题题型总结,欢迎大家的借鉴参考!希望文章能够帮助到大家!

高考数学题型:多做典型题多归纳总结

多做典型题

众所周知,学好数学要多做题,多做题能熟能生巧,但是多做题并不等于滥做题、盲目做题,而是要多做典型有代表性的题,比如说每年的真题,各个区的模拟考试题,高中化学,会做的就不做,专门做不熟的、针对自己薄弱的题型,反复做,只有熟能生巧后才能做题材速度上去,才能从量变到质变产生一个飞跃。

所说的“多”是指题目类型,而不仅仅单纯只是题目数量多。数学中题目多,通过合并,题目类型就有限了,只要把各种类型的题目各自做一定数量,加上细心领悟分析,就会发现题目的规律,进而归纳和总结出不同类型的题。

善归纳总结

在复习过程中,不仅要做典型的题,而且还要善于归纳总结。有些同学就只喜欢做难题,而忽略了基础忽略了做题后的归纳与总结,总结出解题过程中的方法与技巧,总结出知识点内在的区别与联系。

实际上,所谓的难题、综合题都是由几个知识点综合在一起,如果你把基础打扎实了,各个知识点弄通了,难题综合题也就迎刃而解了,你没有发现吗?每个大题都有2-4个小问题,每个小问题单独掰开来看就是一个基础题,只不过是一个小问可能与前一个小问有关联而已。只要你善于去归纳总结,你就会发现各个知识点之间的内在联系,找到它们的关键的核心问题。

高考数学大题题型总结

一、解析几何(圆锥曲线)

高考解析几何剖析:

1、很多高考问题都是以平面上的点、直线、曲线(如圆、椭圆、抛物线、双曲线)这三大类几何元素为基础构成的图形的问题;

2、演绎规则就是代数的演绎规则,或者说就是列方程、解方程的规则。

有了以上两点认识,我们可以毫不犹豫地下这么一个结论,那就是解决高考解析几何问题无外乎做两项工作:

1、几何问题代数化。

2、用代数规则对代数化后的问题进行处理。

高考解析几何解题套路及各步骤操作规则

步骤一:(一化)把题目中的点、直线、曲线这三大类基础几何元素用代数形式表示出来(“翻译”);

口诀:见点化点、见直线化直线、见曲线化曲线。

1、见点化点:“点”用平面坐标系上的坐标表示,只要是题目中提到的点都要加以坐标化;

2、见直线化直线:“直线”用二元一次方程表示,只要是题目中提到的直线都要加以方程化;

3、见曲线化曲线:“曲线(圆、椭圆、抛物线、双曲线)”用二元二次方程表示,只要是题目中提到的曲线都要加以方程化;

步骤二:(二代)把题目中的点与直线、曲线从属关系用代数形式表示出来;如果某个点在某条直线或曲线上,那么这个点的坐标就可代入这条直线或曲线的方程。

口诀:点代入直线、点代入曲线。

1、点代入直线:如果某个点在某条直线上,将点的坐标代入这条直线的方程;

2、点代入曲线:如果某个点在某条曲线上,将点的坐标代入这条曲线的方程;

这样,每代入一次就会得到一个新的方程,方程逐一列出后,这些方程都是获得最后答案的基础,最后就是解方程组的问题了。

3、在方程组的求解中,有时候能够直接求解,如果不能直接求解的,则采用下面这套等效规则来处理可以达到同样的处理效果,并让方程组的求解更简单。

二、立体几何篇

高考立体几何试题一般共有4道(选择、填空题3道, 解答题1道), 共计总分27分左右,考查的知识点在20个以内。 选择填空题考核立几中的计算型问题, 而解答题着重考查立几中的逻辑推理型问题, 当然, 二者均应以正确的空间想象为前提。 随着新的课程改革的进一步实施,立体几何考题正朝着“多一点思考,少一点计算”的发展。从历年的考题变化看, 以简单几何体为载体的线面位置关系的论证,角与距离的探求是常考常新的热门话题。

知识整合

1.有关平行与垂直 (线线、线面及面面)的问题,是在解决立体几何问题的过程中,大量的、反复遇到的,而且是以各种各样的问题(包括论证、计算角、与距离等)中不可缺少的内容,因此在主体几何的总复习中,首先应从解决“平行与垂直”的有关问题着手,通过较为基本问题,熟悉公理、定理的内容和功能,通过对问题的分析与概括,掌握立体几何中解决问题的规律–充分利用线线平行(垂直)、线面平行(垂直)、面面平行(垂直)相互转化的思想,以提高逻辑思维能力和空间想象能力。

2. 判定两个平面平行的方法:

(1)根据定义–证明两平面没有公共点;

(2)判定定理–证明一个平面内的两条相交直线都平行于另一个平面;

(3)证明两平面同垂直于一条直线。

3.两个平面平行的主要性质:

(1)由定义知:“两平行平面没有公共点”。

(2)由定义推得:“两个平面平行,其中一个平面内的直线必平行于另一个平面。

(3)两个平面平行的性质定理:”如果两个平行平面同时和第三个平面相交,那么它们的交线平行“。

(4)一条直线垂直于两个平行平面中的一个平面,它也垂直于另一个平面。

(5)夹在两个平行平面间的平行线段相等。

(6)经过平面外一点只有一个平面和已知平面平行。

以上性质(2)、(3)、(5)、(6)在课文中虽未直接列为”性质定理“,但在解题过程中均可直接作为性质定理引用。

解答题分步骤解答可多得分

1. 合理安排,保持清醒。 数学考试在下午,建议中午休息半小时左右,睡不着闭闭眼睛也好,尽量放松。然后带齐用具,提前半小时到考场。

2. 通览全卷,摸透题情。 刚拿到试卷,一般较紧张,不宜匆忙作答,应从头到尾通览全卷,尽量从卷面上获取更多的信息,摸透题情。这样能提醒自己先易后难,也可防止漏做题。

3 .解答题规范有序。 一般来说,试题中容易题和中档题占全卷的80%以上,是考生得分的主要来源。对于解答题中的容易题和中档题,要注意解题的规范化,关键步骤不能丢,如三种语言(文字语言、符号语言、图形语言)的表达要规范,逻辑推理要严谨,计算过程要完整,注意算理算法,应用题建模与还原过程要清晰,合理安排卷面结构……对于解答题中的难题,得满分很困难,可以采用“分段得分”的策略,因为高考(微博)阅卷是“分段评分”。比如可将难题划分为一个个子问题或一系列的步骤,先解决问题的一部分,能解决到什么程度就解决到什么程度,获取一定的分数。有些题目有好几问,前面的小问你解答不出,但后面的小问如果根据前面的结论你能够解答出来,这时候不妨引用前面的结论先解答后面的,这样跳步解答也可以得分。

三、数列问题篇

数列是高中数学的重要内容,又是学习高等数学的基础。高考对本章的考查比较全面,等差数列,等比数列的考查每年都不会遗漏。有关数列的试题经常是综合题,经常把数列知识和指数函数、对数函数和不等式的知识综合起来,试题也常把等差数列、等比数列,求极限和数学归纳法综合在一起。探索性问题是高考的热点,常在数列解答题中出现。本章中还蕴含着丰富的数学思想,在主观题中着重考查函数与方程、转化与化归、分类讨论等重要思想,以及配方法、换元法、待定系数法等基本数学方法。

近几年来,高考关于数列方面的命题主要有以下三个方面;(1)数列本身的有关知识,其中有等差数列与等比数列的概念、性质、通项公式及求和公式。(2)数列与其它知识的结合,其中有数列与函数、方程、不等式、三角、几何的结合。(3)数列的应用问题,其中主要是以增长率问题为主。试题的难度有三个层次,小题大都以基础题为主,解答题大都以基础题和中档题为主,只有个别地方用数列与几何的综合与函数、不等式的综合作为最后一题难度较大。

知识整合

1. 在掌握等差数列、等比数列的定义、性质、通项公式、前n项和公式的基础上,系统掌握解等差数列与等比数列综合题的规律,深化数学思想方法在解题实践中的指导作用,灵活地运用数列知识和方法解决数学和实际生活中的有关问题;

2. 在解决综合题和探索性问题实践中加深对基础知识、基本技能和基本数学思想方法的认识,沟通各类知识的联系,形成更完整的知识网络,提高分析问题和解决问题的能力,进一步培养学生阅读理解和创新能力,综合运用数学思想方法分析问题与解决问题的能力。

3. 培养学生善于分析题意,富于联想,以适应新的背景,新的设问方式,提高学生用函数的思想、方程的思想研究数列问题的自觉性、培养学生主动探索的精神和科学理性的思维方法.

四、导数应用篇

专题综述

导数是微积分的初步知识,是研究函数,解决实际问题的有力工具。在高中阶段对于导数的.学习,主要是以下几个方面:

1. 导数的常规问题:

(1)刻画函数(比初等方法精确细微);

(2)同几何中切线联系(导数方法可用于研究平面曲线的切线);

(3)应用问题(初等方法往往技巧性要求较高,而导数方法显得简便)等关于 次多项式的导数问题属于较难类型。

2. 关于函数特征,最值问题较多,所以有必要专项讨论,导数法求最值要比初等方法快捷简便。

3. 导数与解析几何或函数图象的混合问题是一种重要类型,也是高考(微博)中考察综合能力的一个方向,应引起注意。

知识整合

1. 导数概念的理解。

2. 利用导数判别可导函数的极值的方法及求一些实际问题的最大值与最小值。 复合函数的求导法则是微积分中的重点与难点内容。课本中先通过实例,引出复合函数的求导法则,接下来对法则进行了证明。

3. 要能正确求导,必须做到以下两点:

(1)熟练掌握各基本初等函数的求导公式以及和、差、积、商的求导法则,复合函数的求导法则。

(2)对于一个复合函数,一定要理清中间的复合关系,弄清各分解函数中应对哪个变量求导。

五、排列组合篇

1. 掌握分类计数原理与分步计数原理,并能用它们分析和解决一些简单的应用问题。

2. 理解排列的意义,掌握排列数计算公式,并能用它解决一些简单的应用问题。

3. 理解组合的意义,掌握组合数计算公式和组合数的性质,并能用它们解决一些简单的应用问题。

4. 掌握二项式定理和二项展开式的性质,并能用它们计算和证明一些简单的问题。

5. 了解随机事件的发生存在着规律性和随机事件概率的意义。

6. 了解等可能性事件的概率的意义,会用排列组合的基本公式计算一些等可能性事件的概率。

7. 了解互斥事件、相互独立事件的意义,会用互斥事件的概率加法公式与相互独立事件的概率乘法公式计算一些事件的概率。

8. 会计算事件在n次独立重复试验中恰好发生k次的概率。

2018年福建高考数学试卷试题及答案解析(答案WORD版)

2018年福建高考数学试卷试题及答案解析(答案WORD版)

2015年福建高考数学试卷试题及答案解析 1 .关注基础,凸显平稳

命题充分关注数学基础知识、基本技能和基本思想方法的考查。文、理科试卷,分别取材于构成高中数学主体框架内容的函数与导数、立体几何、解析几何、概率与统计、三角函数和数列的试题,不仅考查分值占比高,而且有机融合了与之相关的知识、技能和思想方法,从而全面地检测了考生作为未来公民所必需的数学基础。

与此同时,命题立足中学教学的实际,在试卷的题型结构、赋分比例、难度要求以及试题难易梯度等方面,都严格地遵循了《考试说明》的相关规定,并科学地继承福建省已有高考数学命题的成功经验。

2 .注重综合,适度创新

命题基于学科整体意义和考生后续学习需要,立足考试内容抽样的合理性和典型性,综合考查考生知识网络和方法体系的完备性,充分体现《考试说明》中的知识、能力和思想方法等要求。

命题追求稳中求新,适度考查将已有的知识与方法迁移到新情境中解决问题的能力。如理8(文16)以等差数列和等比数列的’定义为载体综合考查推理论证能力、运算求解能力和创新意识;理10、文21(Ⅱ)(ⅱ)分别以导数的几何意义和正弦函数的最小正周期为载体综合考查推理论证能力、特殊与一般思想、有限与无限思想和数形结合思想;理15以纠错码和异或运算为载体综合考查了阅读理解、迁移运用的能力。

3 .依托本质,突出能力

命题将考查综合运用数学的知识与方法解决问题的能力置于首要的位置,依托数学知识与方法的本质含义体现“知识立意”与“能力立意”,既全面又有所侧重地考查了《考试说明》要求的“五个能力”、“两个意识”和“七个思想”。如文12依托“三角函数线”侧重考查推理论证能力、抽象概括能力和数形结合思想;文18、理16分别依托“全网传播的融合指数”和“银行卡密码”侧重考查数据处理能力、应用意识和必然与或然思想;文20(Ⅲ)依托“两点之间线段最短”侧重考查了空间想象能力、推理论证能力和化归与转化思想;理10依托“导数的几何意义”侧重考查推理论证能力、特殊与一般思想和数形结合思想;理15依托“纠错码和异或运算”侧重考查推理论证能力和创新意识;文22、理20依托“导数的综合应用”侧重考查推理论证能力、运算求解能力、创新意识、数形结合思想和分类与整合思想。

4 .强调应用,彰显选拔

命题强调数学的应用,既考查了数学知识与方法在学科内的应用。如文12、文15、文21、文22、理9、理14、理19、理20,也考查了数学知识在解决实际问题中的应用;如文13、文18、理4、理15、理16。

命题立足选拔的要求,淡化层次内的区分,强化层次间的区分,合理预设各种题型的难度梯度,力求各种题型内试题难度与题序同步增加,解答题每个小题也从易到难。如文20、21、22的第(Ⅰ)和(Ⅱ)问,理19、20的第(Ⅰ)问均较易入题,余下各问则着重考查考生的自然语言、图形语言和符号语言的转换和思考的能力。

此外,命题还关注解法多样性,藉此考查不同层次考生分析问题、解决问题的能力,彰显选拔功能。

2022年全国新高考1卷数学试题及答案解析

数学科高考以我国的社会经济发展、生产生活实际为情境素材设置试题。下面是我为大家收集的关于2022年全国新高考1卷数学试题及答案解析。希望可以帮助大家。

全国新高考1卷数学试题

全国新高考1卷数学试题答案解析

高考数学复习主干知识点汇总:

因为基础知识融汇于主干内容之中,主干内容又是整个学科知识体系的重要支撑,理所当然是高考的重之中重。主干内容包括:函数、不等式、三角、数列、解析几何、向量等内容。现分块阐述如下:

1.函数

函数是贯穿中学数学的一条主线,近几年对函数的考察既全面又深入,保持了较高的内容比例,并达到了一定深度。题型分布总体趋势是四道小题一道大题,题量稳中有变,但分值基本在35分左右。选填题覆盖了函数的大部分内容,如函数的三要素,函数的四性(奇偶性、单调性、周期性、对称性)与函数图像、常见的初等函数,反函数等。小题突出考察基础知识,大题注重考察函数的思想 方法 和综合应用。

2.三角函数

三角部分是高中数学的传统内容,它是中学数学重要的基础知识,因而具有基础性的地位,同时它也是解决数学本身与 其它 学科的重要工具,因此具有工具性。高考大部分以中低档题的形式出现,至少考一大一小两题,分值16分左右,其中三角恒等变形、求值、三角函数的图象与性质,解三角形是支撑三角函数的知识体系的主干知识,这无疑是高考命题的重点。

3.立体几何

承载着空间想象能力,逻辑推理能力与运算能力考察的立体几何试题,在历年的高考中被定义于中低档题,多是一道解答题,一道选填题;解答一般与棱柱,棱锥有关,主要考察线线与线面关系,其解法一般有两种以上,并且一般都能用空间向量方法来求解。

4.数列与极限

数列与极限是高中数学重要内容之一,也是进一步学习高中数学的基础,每年高考占15%。高考以一大一小两题形式出现,小题主要考察基础知识的掌握,解答题一般为中等以上难度的压轴题。由于这部分知识处于交汇点的地位,比如函数、不等式,向量、解几等都与它们有密切的联系,因此大题目具有较强的综合性与灵活性和思维的深刻性。

5.解析几何

直线与圆的方程,圆锥曲线的定义、标准方程、几何性质是支撑解析几何的基础,也是高考命题的重点,以下三个小题一道大题的形式出现约占30分。客观题主要考察直线方程,斜率、两直线位置关系,夹角公式、点到直线距离,圆锥曲线的标准方程,几何性质等基础知识。解答题为难度较大的综合压轴题。解析几何融合了代数,三角几何等知识是考察学生综合能力的绝好素材。

2022年全国新高考1卷数学试题及答案解析相关 文章 :

★ 2022高考甲卷数学真题试卷及答案

★ 2022年新高考Ⅱ卷数学真题试卷及答案

★ 2022高考全国甲卷数学试题及答案

★ 2022高考数学大题题型总结

★ 2022全国乙卷理科数学真题及答案解析

★ 2022年全国乙卷高考数学(理科)试卷

★ 2022年新高考1卷语文真题及答案解析

★ 全国新高考一卷2022语文试题及答案一览

★ 2022江西高考文科数学试题及答案

★ 2022全国新高考II卷语文试题及答案解析

2018年浙江高考数学试卷试题及答案解析(答案WORD版)

2018年浙江高考数学试卷试题及答案解析(答案WORD版)

2015年浙江省高考数学命题思路

(数学学科组)

2015年高考是浙江省普通高中深化课程改革首届学生的首次高考,考试范围和要求都有一定的变化。数学试卷遵循《考试说明》,不超纲;依照《教学指导意见》,不偏离;贴近高中数学教学实际,不脱节。

试卷延续了叙述简洁、表达清楚的一贯风格,难度稳定,并呈现出稳中有变,变中求新的特点。

1.稳定考查基础,推陈出新

2015年高考考查范围虽有变化,但试卷仍然稳定考查高中数学主干知识,既关注新增知识点,也注意典型问题和传统方法。理科第4题考查新增知识点,它要求学生对命题有清晰的认识;理科第8题以常见的图形翻折为背景,考查空间想象能力。

2.稳定能力要求,角度变换

试卷在落实基础知识和基本技能的同时,注重对数学思维和数学本质的考查。理科第6题是学习型问题,它依托教材,设问清楚,现学现用;理科第20题以常见二次函数和简单递推为载体构建问题,角度新颖,思维灵活;理科第15题通过空间向量的平台,利用不等式关系,体现最小值的本质,问题的结构特点能让学生有多角度的思考空间。

3.稳定文理差异,逐步调整

试卷关注文理学生的学习差异,文理卷只有一题相同,文科卷中有5题由理科题改编而来。文科第8题由理科第7题改编,问题由抽象变具体,减少了思维量,降低了难度;理科第14题改变数据成为文科第14题,避免了分类讨论,简化了问题;文科第6题是一个生活实际问题,它体现了数学的应用性,这样的变化显示了文理的不同要求。

4.稳定试卷框架,形式渐变

试卷整体结构稳定,充分发挥了三种题型的不同功能。选择题重视概念的本质,要求判断准确。填空题关注计算的方法,要求结论正确,多空题的出现,更好的分散了难点,让学生能分步得分。解答题以多角度、全方位的思考为突破口,展示计算和推理的过程。试卷由22题减为20题,总题量的减少为学生提供了更多的思考时间。

试卷重基础、优思维、减总量、调结构。从基本的函数、常见的图形、简单的递推、熟悉的符号中挖掘出新的设问。它强化本质,强调思维的深刻性;它关注方法,注重思维的灵活性。它导向正确,让数学学习关注本质,课堂教学回归学生。

2015年浙江省高考数学试题评析

调整试卷结构凸显能力考查

绍兴一中特级教师虞金龙

浙江省教研室特级教师张金良

今年的高考数学试卷,延续了浙江省多年的命题风格,保持了“低起点、宽入口、多层次、区分好”的特色,试题的题型和背景熟悉而常见,整体感觉试题灵活,思维含量高,能充分考查学生的数学素养、思维品质、学习潜能,有很好的区分度和选拔功能。试卷主要体现了以下特点:

1.考查双基、注重覆盖

试卷全面考查了高中数学的基础知识和基本技能,着重考查了中学数学教材中的主干知识,准确把握了高中数学的教学重点。试题覆盖了高中数学的核心知识,涉及了函数的概念、单调性、周期性、最大值与最小值、三角函数、数列、立体几何、解析几何等主要知识,考查全面而又深刻,甚至容易被忽视的存在量词也进行了必要的考查。

2.注重思维、凸显能力

今年的试题看似熟悉平淡,但将数学思想方法和素养作为考查的重点,提高了试题的层次和品位,能力考查步伐加大,许多试题保持了干净、简洁、朴实、明了的特点,充分体现了数学语言的形式化与数学的意义,对考生的数学语言的.阅读、理解、转化、表达等能力提出了较高的要求。如理科第7、8、14、15、18、20题,文科第8、15、20(2)题等,数学形式化程度高,不仅需要考生有较强的数学阅读与审题能力,而且需要考生有灵活机智的解题策略与分析问题解决问题的综合能力。

3.分层考查、文理有别

试题层次分明,由浅入深,各类题型的起点难度较低,但落点较高,选择、填空题的前几道不需花太多时间就能破题,而后几题则需要在充分理解数学概念的基础上灵活应变;解答题的5个题目中共有10个小题,仍然具有往年的“多问把关”的命题特点。试卷关注文理考生在数学学习方面的差异。理科特点突出,注重考查理性思维和抽象概括能力,文科注重考查形象思维和定量处理能力。全卷文理相同题仅有1题,姐妹题也只有2题,文科较理科在许多方面都作了适当的降低。

4.稳中有变、坚持创新

创新是时代的特征,试卷在三类题型不变的基础上,在试卷结构与命题手法上作了创新,改变以往一成不变的模式,减少了两个选择题,丰富了填空题的形式,出现了一题多空。在命题手法上,通过改造、移植、嫁接的方法编制了一批立意深远、背景丰富、表述简洁的新题。如理科第8题看似简单,但颇值得回味;理科第15题题型新颖,背景深刻,过程简练,不落俗套;理科第18题在经典的二次函数中植入新的设问,令人耳目一新;理科压轴题简洁灵活,独具匠心,需要考生冷静分析后破题;文科第8题在椭圆定义与平面几何性质上做文章,平淡中出新招,凸显了数学的魅力。

统揽全卷,试卷传递一个信息:考生盲目的题海战术,做再多的题也不能考出理想的成绩。高中数学教学要让学生感受到基础知识和基本技能的重要性,要引导学生学会在“看、做、想、研”的基础上做题。

                       
上一篇 2022年11月17日 am6:07
下一篇 2022年11月17日 am6:07